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Abstract In this paper we present a highly convergent renormalization scheme for the 
computation of Green’s functions of interfaces in the case of tight-binding models. It allows the 
calculation of the Green’s function of the whole infinite system, which is built up of a stack of a 
semi-infinite solid of material A, an interface region, and a semi-infinite solid of material B. As 
a first application we analyse the layer-resolved interface electronic structure of Sb/GaAs(llO) 
and compare the results with calculations for (xML)Sb/GaAs(llO), x = 1.2 and 3. We find 
several interface states in the fundamental band gap of GaAs(ll0). Their energy dispersion and 
orbital composition =e discussed in detail. Furthermore, we find that the interface electronic 
Structure of (3ML)Sb/GaAs(llO) still differs significantly from that of the system terminated by 
a semi-infinite Sb crystal. 

1. Introduction 

The key to calculations of the electronic structure of solids is the Green’s function. It allows 
the determination of electronic properties, such as the layer density of states (LDOS) or the 
charge density, and may be used also in cases where the three-dimensional periodicity of 
the system is destroyed, e.g. as for surface-terminated solids, solids containing defects, 
interfaces, and superlattices. 

A lot of computational schemes for the determination of the Green’s function of 
interfaces have been developed, especially in the case of tight-binding models. Schulman 
and Chang (1983) introduced a so-called reduced Hamiltonian method. At the interface, 
transfer matrices are used for the determination of the total wavefunction, which itself is 
expanded into bulk states with complex wavevector far away from the interface. Lambrecht 
and Andersen (1986) developed a scheme for tight-binding muffin-tin orbitals based on the 
Green’s function matrix of the ideal system. In recent publications Skriver and Rosengaard 
(1992; Rosengaard and Skriver 1993) applied this method to the surface and interface 
electronic structure within a comprehensive implementation. The method of Green’s 
function matching has been applied to surfaces and interfaces by Muioz et a1 (1987). 
Furthermore, a difference-equation approach has been developed by Chen er al (1989). 
A renormalization formalism for the calculation of the electronic structure of superlattices 
has been deduced by Graft et a1 (1987) and applied to silicon superlattices. The Green’s 
function of solids with bulk- or surface-located defects has been derived by Wachutka et ul 
(1992). A survey of several methods is given by Grosso et al (1989). Lastly, we have to 
mention an approach based on multiple scattering theory by MacLaren et al(l989). 
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In a previous publication we have formulated a renormalization procedure based on the 
work of Lopez Sancho et al (1985). which allows a fast computation of surface electronic 
properties in the case of tight-binding models (Henk and Schattke 1993a). In this paper 
we present an extension of this calculational scheme to interfaces and discuss in detail the 
electronic properties of the Sb/GaAs interface. 

The renormalization method described here allows a highly efficient numerical 
implementation. Furthermore, the in-principle infinite number of iteration steps can be 
significantly reduced by well-defined break conditions which yield a controlled error in the 
results. For example, in practical calculations not more than ten iterations are necessary to 
reduce the error in the LDOs due to the termination of the renormalization loop below 1 %. 
The complete Green’s function matrix of the stack of the two semi-infinite solids can be 
easily computed via transfer matrices. This allows a detailed analysis of the hybridization of 
resonances with bulk states and of &e decay of interface-state wavefunctions in directions 
normal to the interface plane. Due to the high efficiency of the method and to the simplicity 
of the underlying tight-binding formalism, large unit cells as well as large basis sets can be 
treated. 

In recent years there has been growing interest in systems with many adsorbed layers. 
The experimental and theoretical study of the geometrical and electronic structure of layer- 
by-layer grown adsorbates allows an analysis of the transition from the monolayer to the 
bulk crystal. At the interface, i.e. the boundary between the substrate and the adsorbate, 
the localized states will be considerably influenced by the boundary condition at the surface 
side of the system, especially if the number of adsorbed layers is rather small. 

In calculations of the electronic structure of surfaces applying sophisticated computation 
schemes, the semi-infinite system is often represented by a slab of few atomic layers (see for 
example Hybertseu and Louie 1987 and Kress et a1 1993). An extension of this approach to 
treat an interface is rather difficult due to the small number of layers associated with the two 
materials. At first, an increase of the slab size will raise the computation time considerably. 
Second, the electron states located at,the interface may be perturbed by ‘wrong’ boundary 
conditions at the two surfaces of the. slab. This may happen for example if the interface 
states overlap with the surface states, leading to erroneous results. In other words, the 
interface region and surface have to decouple to yield a reliable interface electronic structure. 
Here, the need for a computational scheme taking into account the stacking of two semi- 
infinite solids appears. Nevertheless, slab methods in their linear versions yield all energy 
eigenvalues at once by a single inversion of the (large) Hamiltonian matrix, whereas in 
Green function methods the energy has to be scanned but smaller matrices have to be 
inverted. 

In the past decades Schottky barriers have attracted constant interest in the solid state 
field and a lot of empirical data have been accumulated (for a review see Monch 1986) 
with an apparent need for theoretical calculations on a microscopic basis. Therefore, such 
an interface lends itself support as a first application of the calculational scheme presented 
below. We choose the Sb/GaAs interface because the adsorbate system (lm)Sb/GaAs(llO) 
has been studied both experimentally and theoretically. The geometrical structure has 
been determined by LEED (low-energy electron diffraction) (Duke et a1 1982) and LEPD 
(low-energy positron diffraction) (Chen et a1 1993), whereas the electronic structure has 
been analysed both theoretically (Bertoni et a1 1983) and by angle-resolved photoemission 
spectroscopy experimentally (Mirtensson et al 1986). Our main interest is to analyse 
the difference in the interface electronic structure of surface-terminated systems such as 
(xm)Sb/GaAs, x = 1, 2 and 3, with respect to the interface electronic Structure of the 
system terminated by a semi-infinite Sb crystal. Because the lattice constants of both GaAs 
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and Sb differ incommensurably we introduce so-called averaged tight-binding parameters. 
This is necessary because translational invariance parallel to the interface layer is an essential 
ingredient in a layer-renormalization scheme. 

The renormalization method has also been applied to the CoICu interface successfully 
(Reiser 1993). A detailed analysis of the rich spin-resolved interface-band structure will be 
published elsewhere. 

2. Theory 

In this section we give a short description of the renormalization procedure for the interface 
electronic structure. Because it is an extension of the method used for the computation of 
the surface electronic Structure only new features will be presented in detail. Therefore, we 
refer to a previous publication (Henk and Schattke 1993a). 

2.1. Layer Bloch sums and interaction matrices 

As a basis we choose Bloch sums 

(1) 

which are labelled by the layer index n. All other state characteristics, for example the 
atomic quantum numbers, are condensed into one multi-index 01. Here, @a denotes an 
atomic orbital. The sum runs over all Nil unit cells of layer n. In the considerations below, 
we take the component 

The solid we are concerned with may be seen as a stack consisting of a semi-infinite 
crystal of material A, the interface region I, and a semi-infinite solid of material B. 
Furthenno=, translational symmetry parallel to the interface is assumed. 

As a next step we introduce so-calledprincipal layers, i.e. a stack of atomic layers, such 
that only Bloch sums localized at adjacent principal layers interact. The numbers of Bloch 
sums per principal layer in the three regions are denoted NA,  N I ,  and NB, respectively. 
Furthermore, we choose the interface region as being built by a single principal layer with 
layer index set arbitmrily to 0. Material A consists of principal layers with positive index 
n, material B of those with negative index n. 

Due to this arrangement the interaction between Bloch sums in the region filled by 
material A is described by NA x NA matrices which will be abbreviated as follows (cf Henk 
and Schattke 1993a): 

1 
(r I nu) = - zexp[ilcll . (Rj + r,)l %(T - Rj - ra) 

f i j  

of the wavevector as fixed and, therefore, suppress it. 

Am = z Snn - Hm (24 

for n k 1. n being the principal layer index. Here, z denotes the complex energy, 
z = E +io, q > 0. S and H are the overlap and the Hamiltonian matrices. The interaction 
in material B is described in a similar way by NB x NB matrices, 
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for n < -1. The intralayer interaction of the interface principal layer is given by the NI x NI 
matrix 

Io0 = z Sw - Hm. ~ (4) 

Due to the nearest neighbour coupling of principal layers, Bloch sums of region A do not 
interact directly with those of region B. The interaction of the material A region to the 
interface layer is described by a NI x NA- and a N A  x NI matrix: 

( 5 4  

(5b) 

-As - 01 - z SOI - HOI 

-A$ = z Si0 - H I O .  

In the same way we arrive at 

-B& = z S-i.0 - H - I , ~  

-Bii = z S,-l - (6b) 

for the coupling of material B to the interface layer. A matrix labelled with a dagger (t) is 
in general not the hermitian conjugate of the respective matrix without a dagger because z 
may be complex. 

Because our basis set may be non-orthogonal, i.e. S may be not equal to the unit 
matrix, the Green's function is given in a conjugate basis (Ballentine and Koliii 1986). In 
this paper we omit the distinction of the two basis sets because it should be clear which 
basis is cumently used. 

2.2. Renormalization instructiom 

Due to the renormalization method one eliminates block matrices of the Green's function 
with odd principal-layer indices. Observing that the resulting equations possess the same 
structure as the starting equations the same elimination procedure could be carried out. This 
leads to a set of renormalization instructions which in our case read 

roo -+ im - B ; ~ ( B ~ ) - ~ B ; ~  - A;,(A,&A$ ( 7 4  

(76) -1 t 
A01 Am + Am - A;,(Am)-'Aoi - Aoi(Aco) 

Carrying out a sufficiently large number of iteration steps the effective interaction between 
principal layers will become considerably small regarding the strength of the intralayer 
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interaction. Thus, the block matrices of the Green's function will be given in the limit of 
an infinitely large number of iterations by 

(IwI-' -+ Gw (sa) 
(Am)-' + GA @b) 

(Boo)-' + GB. (8c) 
Gm represents the diagonal block of the Green's function of the interface principal layer. 
The diagonal block of the bulk Green's function is given by GA for material A. The 
respective Green's function of material B reads GB. 

Setting B& and Bif from the beginning equal to zero, i.e. decoupling the material B 
region from the interface, one anives at the renormalization instruction for a reconstructed 
surface of material A. In this case the interface layer plays the role of a reconstructed or 
relaxed layer. 

2.3. Transfer matrices 

As in the case of a semi-infinite solid the remaining blocks of the Green's function are 
accessible by means of transfer matrices. The latter are easily determined in a similar way 
as the renormalization instructions. We define 

TA = CAmAil ( 9 4  

TA ' - A  - 01 AOO (9b) 

T; = C A ~ A $ ,  (9c) 

(94  

TB = GBWBO~ (9d 

Tst - AS " 
A - OIGAm 

T: = B& BBw (9n 

Ti = C B ~ B ~ ,  (9d 

(9h) 
with the Green's function for the ideal surface of material A, CAw, the inverse of which 
can be determined by the renormalization instruction 

TSt - Bst " 
B - OIGBw 

A~ -> - A ~ ~ ( A ~ ) - ~ A ~ , .  

B~ .+ B~ - BA ( B ~ ) - '  B~~ 

For material B we arrive at 

which converges to 6&. Now the whole matrix of the Green's function is available by 
means of 

G,+I,, = TAG,,, for 1 < n, m < n (12a) 
GI, = TiGom for m < 0 (12b) 

(12c) ~ . , ~ + l  = G,,,T~ 

~ o , ~ + l  = G~,T;+ for o g m (126) 

for 1 < n, n g m 

G~~ = CAW + T ~ G ~ ~ T : ~  W e )  
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G"+I,~+I = CAM + TAG,,TL for n > 1 (128 

G, , - I .~  = TBG,,, for n 6 -1, n < m (134  

G-I,, = T i G h  for 0 < m (13b) 

Gn,,,-l = G,,,TJ for n < -1, m < n (13~)  

G-,-~ = Gsw + T;G@T;+ (134 

Gn-l."-l = CBW + TBGnnTi for n < -1. ( 1 3 ~  

and the similar equations for material B 

GO,,,-, = G ~ T ; +  for m < o (134 

The layer-resolved density of states may be defined as 

1 .  
K v-o+ &(E)  = -- lim Im Tr ( S .  G ( E  + iq)) I m  (14) 

where the trace is restricted to the specified principal layer m. In the same way a symmehy- 
resolved or orbital-resolved DOS may be introduced. 

2.4. Break conditions 

Because it is not possible to carry out an infinitely large number of iterations of the 
renormalization loop, one has to look for well-defined break conditions. For example, 
for the recursion method a lot of break conditions exist (Haydock 1980). In principle, the 
error due to the termination can be made arbitrarily small. 

The simplest break condition is a definite number of iterations which has the 
disadvantage that in band gaps the number of iterations will be too large, whereas at band 
edges it may be too small, thus leading to an unknown error in the LDOS. 

Therefore, consider the maximum of all matrix norms of the interlayer interaction 
matrices after the ith renormalization step 

M i = m a ( I I ~ i i  II ,... I I B ~ I I ) .  (1.5) 

MO refers to the initial interaction matrices. In the limit i -+ CO, Mi will vanish. We define 
the absolute error as Mi itself and the relative error by MilMo. The iteration loop has to 
stop if the absolute or the relative error are below a given small value. This procedure 
results in a more accurate LDOS than the simple maximum iteration count break condition. 
For example, in the case of an one-dimensional solid, in band gaps typically no more than 
three iterations are necessary to arrive at a relative error (refering to the LDOS) smaller than 
0.01, whereas at band edges the number of iterations increases up to 11. In practice, the 
termination of the loop due to the relative error gives best results. 

2.5. Averaged tight-binding parameters 

Incommensurate stacking of layers cannot be treated by calculation schemes which require 
translational invariance parallel to the atomic layers. Therefore, we introduce averaged 
tight-binding parameters which take into account the variation of the interatomic distance. 
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In order to calculate the elements of the overlap matrix S between two incommensurable 
layers it is a first approximation to confine the summation to the nearest neighbour (NN) 
terms, which in the case of SbIGaAs reduce to one: 

where Nil is the number of planar unit cells, jp  is the index of the atomic orbital (Y in 
the j th  unit cell of the pth layer. The Bloch sum I pa) belongs to material A, whereas 
I 48) belongs to the incommensurate layer of the interface I. Using atomic wavefunctions 
(Clementi and Roetti 1974) overlap integrals can be evaluated for each atomic distance. 
Therefore, assumptions on a scaling with distance, such as the d-' power law, are not 
necessary. 

The sum above cannot be simplified, since all unit cells are different because of 
incommensurability. The directions of the vectors Rjp - R!, are isotropically distributed 
and for all ( j ,  h)  there exist index pairs (i, k) ,  such that I (Rjp - R!q) - (R/k - RjJ I 
is arbitrarily small, i.e. the vectors constitute a dense set. These facts enable the transition 
from summation to integration, the introduction of plane polar coordinates (r, 6) and a 
further approximation of this integral by a sum: 

(17) 
I M  

Sqpp&i) = - I ~j I exp(iklp'j)(a, OlS, T, ' )ArjA@j.  
s-2 j = l  

s-2 denotes the integration area zi& with rma being the third-next neighbour distance of the 
ideal GaAs crystal. In our calculations for Sb/GaAs we have chosen M = 100 integration 
points distributed on concentric circles, Abj = A@ and Ar.  - Ar. 

A similar calculation can be carried out for the Hamiltonian matrix elements. In the case 
of the calculations for the Sb/GaAs interface presented below, this is not necessary because 
we apply the extended Hiickel theory (EHT) which gives a direct connection between the 
overlap matrix elements to those of the Hamiltonian. 

J. - 

3. Application to Sb/GaAs 

Serving as an example the electronic structure of the interface Sb/GaAs(llO) has been 
examined. The unit cell of the semimetal Sb is rhombohedral and contains two atoms. This 
crystal structure is composed of two interpenetrating, trigonally distorted, face-centred-cubic 
lattices. The lattice constants of the hexagonal system are a =4.3007 A and c =~11.222 A 
(Falicov et ai 1966). The semiconductor GaAs crystallizes in the zincblende structure with a 
lattice constant of a = 5.65325 A (see for example Blakemore 1982). Therefore, GaAs(ll0) 
shows to be incommensurate with any of the Sb planes within a reasonable number of unit 
cells. There is experimental evidence, that one monolayer of Sb continues the GaAs lattice 
with relaxation. For coverages greater than 1% experimental investigations show a three- 
dimensional island growth atop the initial Sb monolayer without long-range order (Hu et 
al 1990), i.e. the second Sb layer can be seen as commensurate with misfit defects or as 
incommensurate depending on the lateral size of the islands. Both situations have to be 
considered in estimating the electronic structure. 

Before analysing the interface-band structure we give a sketch of the underlying 
theoretical assumptions of the calculation. 
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The knowledge of the tight-binding overlap matrix, which can be easily calculated 
analytically for every interatomic distance, allows the parametrization of the oneparticle 
Hamiltonian using the extended Hiickel theory (Hoffmann 1963 and Nishida 1981): 

H . I ~ I ( ~ )  = - KmZc(Serer(k) - 1) (184 

& l a m ( k )  = - - K , s ( L  + l a )  Sd.Sfn(k) (186) 

for (al) # (Bm), where a and I run over$l orbital symmetries and over all basis atoms, 
respectively. The parameters K,a. I, and I, are chosen to give the hest fit to experimental 
angle-resolved photoemission data (Mhensson et nl 1986, Carstensen 1991) and to more 
sophisticated theoretical band-structure calculations (see for example Chelikowsky and 
Cohen 1976, Cardona et al 1988). 

Our parameter set for GaAs has been determined by fitting to the well-established 
bandstructure calculations of Chelikowsky and Cohen (1976) and Cardona et al (1988). 
Furthermore, we have carried out self-consistent calculations leading to nearly the same 
parameter set (Kruse 1990). The charge transfer from Ga to As is in good agreement with 
ionicity, which corroborates the use of appropriate wavefunctions. 

Though Sb is a group V semimetal, very suitable EHT parameters were obtained from 
a fit to the bulk-band structures presented by Falicov et al (1966) and Bullett (1975). Our 
basis set consists of the 4s and the 4p orbitals of both Ga and As, as well as the 5s and 5p 
orbitals of Sb. 

This parametrization scheme has proven its suitability in surface electronic structure and 
also photoemission calculations for 111-V and II-VI semiconductor compounds (Henk et al 
1993b and references therein). By considering matrix elements the latter includes also the 
wavefunctions, additionally showing this procedure to be physically unique, though a pure 
mathematical bandstructure fit alone may not be. 

The (1 10) surface of GaAs covered with Sb requires three EHT parameter sets. WO sets 
are obtained from bulk GaAs as well as from bulk Sb parametrizations. In order to determine 
the third set which handles the GaAsSb interaction, the well-established electronic structure 
ofthe system GaAs(llO)-p(lxI)-Sb(lhlL) (Bertoni etal 1983 andMailhiot etal 1985) has 
been interpolated. From our point of view this procedure results in more reliable EHT 
parameters than the usual arithmetic mean between the two bulk Em parameter sets. The 
energies of the surface states are lying within the energy ranges given by the differences 
between the calculations of Bertoni et al (1983) and Mailhiot et al (1985). Furthermore, 
the number of surface states agrees with that in the two former calculations. This gives 
further support to the EHT parametrizations for zincblende semiconductor compounds (Henk 
and Schattke 1989). 

The knowledge of these extended Hiickel parameters allows us to calculate the electronic 
structure of systems with any number of Sb layers on any surface of the GaAs crystal 
supposed the atomic geometry has been determined. Because of the lack of experimental 
data for systems with more than one monolayer of Sb, total-energy minimization calculations 
should be carried out. They have been done along the tight-binding formalism given by 
Chadi (1979). This formalism is numerically quite simple and is appropriate as long as 
ab initio calculations are lacking. However, for more than one layer of Sb adsorbed on 
GaAs(l10). the incommensurability of the bulk GaAs and of the Sb crystal structures 
has to be considered. It globally results in lattice faults and textures, and therefore the 
exact atomic positions are of minor importance. In order to overcome this problem, the 
incommensurability is treated by applying averaged tight-binding parameters (cf subsection 
2.5). The idea behind this assumption is that sufficiently large areas of unperturbed 

1 
2 
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interface structure exist to yield a unique electronic picture, as measured by angle-resolved 
photoemission spectroscopy. These areas separate incommensurable lattice regions which 
are taken to be of the respective bulk geometry. Systems with Sb layers commensurate with 
the GaAs substrate are denoted by their specification following the substrate specification, 
whereas systems with incommensurate Sb layers are denoted with their specification in front 
of the substrate specification. For example, the semi-infinite solid (IML)Sb/GaAs( 110)- 
p(1 x 1)-Sb(1ML) consists of the GaAs(ll0) substrate, on which a commensurate monolayer 
of Sb is adsorbed, followed by an incommensurate Sb monolayer. 

Figure 1. Surface electronic structures of incommensu- 
rate (IML)Sb/GaAs(llO) (circles) and GaAs(llO&p(lxl)- 
(IML)Sb (solid lines) along the high-symmetry lines of the 
surface Brillouin zone of GaAs(ll0). The shaded area rep- 
resents the projected bulk-band structure of GaAs. Only 
surface states which are strongly localized in the Sb layer 
are shown. 

Figure 1 shows the surface electronic structure of the system GaAs(ll0)-p(lx1)- 
Sb(1ML) in comparison with that of the system (lML)Sb/GaAs(llO). Though the former 
configuration, Sb in positions of the GaAs bulk, does not represent the established 
physical picture of a one-overlayer reconstruction, it has been included for convenience of 
comparison. It shows a surface-band structure similar to that of the uncovered GaAs( 110) 
surface (Henk er a1 1993b). namely surface states in the heteropolar gap, resonances at 
the ‘stomach gap’ and surface states at the valence band maximum (VBM) with a similar 
dispersion as the dangling-bond surface state on GaAs(l10). The surface-band structure 
of (lML)Sb/GaAs(llO) already shows the typical features of all those systems with ideal 
(xm)Sb, namely a cumulation of p-type surface states within the fundamental gap of 
GaAs(l10). Note the missing of resonances near the ‘stomach gap’. Furthermore, in the 
heteropolar gap two surface states composed of Sb s orbitals occur. 

The next step is the analysis of systems with two layers of Sb adsorbed on the 
(110) surface of GaAs. The surface electronic structure has been calculated for three 
systems: GaAs(ll0)-p(l x I)-Sb(ZML) with the atomic structure being determined by total 
energy minimization, (ZML)Sb/GaAs( 110) with an application of the averaged tight-binding 
parameters, and (lML)Sb/GaAs(llO)-p(l x1)-Sb(1ML) containing as surface one ideal Sb 
layer also treated within the averaged tight-binding scheme. 

The atomic geometry of GaAs(1 10)-p(l x l)-Sb(2ML) has been determined by total- 
energy minimization based on the assumption, that the Sb atoms of the outermost layer are 
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Figure 2. (a)Surface electronic stmctllre of GaAs(llO>-p(lxl)-(2~)Sb. The shaded area 
represents the projected buk-band s t m c t w  of GaAs(ll0). Only surface states which are 
strongly localized in the Sb layers are shown. (b) As figure 2(a), but with projected bulk-band 
shuctu-e of Sb. 

placed at sites such that the two-dimensional unit cell of the outermost Sb layer is rectangular 
and has a two-point basis. Besides, the relaxation of the GaAs layers and the inner Sb layer 
is supposed to remain unchanged when the second layer Sb is adsorbed. This procedure 
seems to be justified, because we are interested in the general character of this system, 
subtle changes due to subsurface relaxations may be taken into account if experimental data 
are available. We used the same total energy minimization scheme as Mailhiot et al(1985) 
who determined structural parameters for both GaAs(ll0) and GaAs(ll0)-p(lx I)-Sb(1ML) 
which are in good correspondence with experimental data. 

The following data represent the obtained differences from the positions in an 
ideal GaAs(ll0) zincblende lattice: A T A ~  = (-0.09555, -0.2454. 0.9872) A, Area = 
(-0.0613, 0.4206, 1.2061) A. The x ,  y and z axes point into the directions [liO], [OOl] 
and [110], respectively. The relaxation of the outermost Sb layer is very strong compared 
to that of the inner Sb layer. The tilt angle reads 6" and is slightly larger than that of 
GaAs(llO)-p(l x l)-Sb(lML with 3", whereas clean GaAs(ll0) shows a tilt angle of 31" 
(Duke et a[ 1983). The mirror-plane symmetry has been destroyed by the relaxation in 
[IiO] direction, a first hint for effects due to incommensurability. 

Figures 2(a) and @) represent the resulting surface electronic structure of GaAs(ll0)- 
p(1 x l ) -Sb(W) which is rather different from that of the remaining two calculated overlayer 
systems, (2b&)Sb/GaAs(llO) and (l~)Sb/GaAs(llO)-p(lxl)-Sb(l~). The four surface 
bands running between -10.5 eV and -7.5 eV localized at the two Sb layers are s-like 
in orbital character. The energy range from -7.5 eV to -6.5 eV contains surface states 
localized at the outermost Sb layer which are pxpy-like, the px and the p, orbitals being 
parallel to the crystal surface. Above -2 eV there are very dispersive states localized at the 
four outermost layers which are p,-like in character, the pr orbitals aligned to the surface 
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normal. The surface states not explicitly mentioned yet are mainly plike in orbital character 
and show pronounced localization neither at the surface nor at the interface. The crystal 
surface is expected to be metallic because one of the dispersive states, p,-like in character, 
crosses the Fermi level (0.84 eV above VBM of GaAs) several times. Most of the surface 
states and resonances can be easily followed throughout the whole surface Brillouin zone 
(SBZ) but at certain values of kll some states only show an enhanced LDOS at the surface. 

Figure 3. Interface states of incommensurate 
(3~~)Sb/GaAs(llO) (lower panel) and of semi- 
infinite Sb/GaAs(llO) (upper panel). The shaded 
area represents the projected bulk-band structure 
of GaAs(l10). For (3m)Sh/GaAs(llO) only 
states localized at the outermost GaAs layer are 
shown, whereas in the upper panel GaAs located 
(0) and Sb located (0) are given. 

It could be expected that the electronic bands lying in gaps of the projected bulk-band 
structures of both Sb and GaAs(ll0) (shaded area in figures 2(a) and (b)) will be observed at 
the GaAs-Sb interface in systems with more than two layers of Sb. Especially the variety of 
states in the GaAs ‘stomach gap’ which is not covered by the projected Sb structure seems 
to fulfil this assumption. To clear this point higher Sb coverages were investigated. In 
contrast to the first guess the existence of interface states in the ‘stomach gap’ could not be 
confirmed, however, they were found only in the fundamental gap of GaAs(1 lo), especially 
for the systems (3ML)Sb/GaAs(l IO) and the Sb/GaAs(l 10) interface (cf figure 3), being p- 
like in orbital character. The system (3ML)Sb/GaAs(llO) shows many surface states nearly 
uniformly localized at the three Sb layers. The positions and the dispersion of these states 
are similar to those of the systems (lML)Sb/GaAs(llO) and (2ML)Sb/GaAs(llO) (cf figure 
1). Additionally and in contrast to (xML)Sb/GaAs(llO), x =. 1.2, the (3ML)Sb/GaAs(llO) 
system posesses interface states localized at the outermost GaAs layer. Only these are 
depicted in the lower panel of figure 3. 

The lack of interface states in the ‘stomach gap’ can be seen by the following reasoning. 
In the commensurate one- and two-layer coverage these states are localized in the topmost 
layer which still reflects the GaAs structure and thus show only a GaAs character. Whereas 
in the incommensurate case, independent of the number of layers, the assumed Sb bulk 
structure seems to prevent surface states in this energy regime. 

There are three types of interface states: 

(I) The energy of the first type lies within bulk-band gaps of both materials, A and 
B. These states decay into both directions normal to the interface plane and correspond in 
character to the usual surface states. 

(ii) The second type of interface states possesses an energy which lies in a band gap of 
one material, say A, but lies in the projected bulk-band regime of the other (B) and, hence, 
may be resonant with the bulk states of material B. 

The interface electronic structure of the system terminated by a semi-infinite Sb crystal 
(upper panel in figure 3) differs significantly from that of (3ML)Sb/GaAs(llO). This system 
shows interface states localized either at the GaAs layer or at the Sb layer adjacent to the 
interface. Serving as an example, figure 4 gives the LDOS at a. Most of the interface states 

(iii) The third type corresponds to type two but with material A and B interchanged. 
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are lying in the fundamental gap of the projected bulk-band structure of GaAs(l10). These 
states are of type two because their energies lie in the gap of GaAs(ll0) but in the projected 
bulk-band regime of Sb. Only two of these states show an enhanced LDOS at the GaAs 
layer. Furthermore, we observe two GaAs-derived states at high binding energies which 
correspond to the surface states found on clean GaAs(l10). At -9.8 eV an As-s-like state 
is closely located at a bulk-band edge. This state corresponds to the A2 state of GaAs(1 IO). 
Here, we use the commonly accepted nomenclature of GaAs(1 IO) surface states. A surface 
state similar to Cz found at GaAs( 110) occurs at -7.0 eV. Note the strong confinement of 
the interface states especially at the fundamental gap. For example, Sb derived states induce 
only little LDOS in the GaAs layers, and vice versa. This may be typical for semiconductor- 
metal interfaces: for the Co/Cu interface one finds interface states which penetrate into up 
to four layers adjacent to the interface (Reiser 1993). 

Flare 4. Laver-resolved density of states for ka at ;i? for semi-infinite Sb/GaAs(llOl. The - . ,  
layer type is given at the leff at each curve, the respective zero corresponds to the value at its left 
egde. All curves share a common m s  scale and, thus, relative peak heights can be compared. 

Because the interface electronic structures of the systems (3~~)Sb/GaAs(llO) and 
Sb/GaAs(llO) differ considerably we conclude that the boundary conditions at the surface 
side, i.e. in direction towards the Sb bulk, show effect on the interface states. To analyse 
the question how many Sb layers are necessary to result in an interface-band structure 
very close to that presented here, one has to compute the LDOS for (xML)Sb/GaAs(llO) for 
x larger than 3. But this procedure ends in large basis sets and, therefore, in a large 
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amount of computer time, which is not required in the interface calculation presented 
here. Besides other calculation schemes (see for example Skriver and Rosengaard 1992 
or Crampin 1993) this renormalization procedure has obviously shown its applicability for 
this type of problems. 

4. Conclusion 

We have derived a renormalization scheme which allows the fast computation of the Green’s 
function of interfaces. To treat incommensurate systems so-called averaged tight-binding 
parameters have been introduced. As a first application we have studied the interface 
electronic structure of Sb/GaAs(l IO) and compared the results with those of the GaAs(l10) 
surface covered with up to three monolayers of Sb. Interface states are found in systems 
with more than two Sb layers. Their energies lie in the fundamental band gap of GaAs, 
and they are strongly located at the interface layers. The system Sb/GaAs(llO) shows 
interface states in the first Sb layer, which are not present in (3ML)Sb/GaAs(llO). Therefore, 
three layers of Sb are not sufficient to separate the Sb surface from the interface layer. 
Effects due to incommensurate adsorption are found for the states with energies in the 
‘stomach gap’ of GaAs(ll0). For the systems with one or two commensurate adlayers, 
states in the respective energy- and kll-regime are present, whereas they are missing in the 
incommmensurate systems. Because some of the interface states are clearly lying in the band 
gaps of the projected bulk-band structure of both Sb and GaAs, they should be detectable in 
angle-resolved (inverse) photoemission experiments, with not-too-high adsorbate coverage. 
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